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Abstract. The application of two techniques to reconstruct the shape of a two-dimensional periodic perfect conductor from7

mimic the measurement data is presented. A periodic conducting cylinder of unknown periodic length and shape scatters the8

incident wave in half-space and the scattered field is recorded outside. After an integral formulation, the microwave imaging9

is recast as a nonlinear optimization problem; a cost functional is defined by the norm of a difference between the measured10

scattered electric fields and the calculated scattered fields for an estimated shape of a conductor. Thus, the shape of conductor11

can be obtained by minimizing the cost function. In order to solve this inverse scattering problem, transverse magnetic (TM)12

waves are incident upon the objects and two techniques are employed to solve these problems. The first is based on an particle13

swarm optimization (PSO) and the second is a self-adaptive dynamic differential evolution (SADDE). Both techniques have14

been tested in the case of simulated mimic the measurement data contaminated by additive white Gaussian noise. Numerical15

results indicate that the SADDE algorithm is better than the PSO in reconstructed accuracy and convergence speed.16

Keywords: Inverse scattering, frequency-domain, self-adaptive dynamic differential evolution, particle swarm optimization17

1. Introduction18

The detection and reconstruction of buried and inaccessible scatterers by inverting microwave electro-19

magnetic data is a research field of considerable interest because of numerous applications in geophysical20

prospecting, civil engineering, and nondestructive testing. Numerical inverse scattering studies found in21

the literature are based on either frequency or time domain approaches. However, it is well known that22

one major difficulty of inverse scattering is its ill-posedness in nature [1].23

Another inverse scattering problem is the nonlinearity because it involves the product of two un-24

knowns: the electrical property of object, and the electric field within the object. In general, the non-25

linearity of the problem is coped with by applying iterative optimization techniques [2,3]. These algo-26

rithms based on stochastic strategies, offer advantages relative to local inversion algorithms including27

strong search ability, simplicity, robustness, and insensitivity to ill-posedness. In contrast to traditional28

computation systems, evolutionary computation [4–8] provides a more robust and efficient approach29
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Fig. 1. Geometry of the problem in (x, y) plane.

for solving inverse scattering problems. Particle swarm optimization (PSO) has proven to be a useful30

method of optimization for difficult and discontinuous multidimensional engineering problems [9,10].31

PSO is very efficient at exploring the entire search space. A new method of optimization, Self-Adaptive32

dynamic differential evolution (SADDE) is able to accomplish the same goal as genetic algorithm (GA)33

optimization in a new and faster way. Since PSO and SADDE both work with a population of solutions,34

combining the searching abilities of both methods seems to be a good approach.35

Frequency domain inverse scattering by population-based stochastic algorithms are published in the36

last ten years. Concerning the shape reconstruction of conducting scatterers, the PSO has been investi-37

gated whereas the GA has been utilized in the reconstruction of periodic conductor scatterers [11,12]. In38

this case, the reported results indicate that the PSO is reliable tools for inverse scattering applications.39

Moreover, it has been shown that both DE and PSO outperform real-coded GA in terms of convergence40

speed. In recent decade years, some papers have compared different algorithm in inverse scattering [4].41

However, to our knowledge, a comparative study about the performances of particle swarm optimiza-42

tion and self-adaptive dynamic differential evolution when applied to inverse scattering problems of a43

periodic conductor has not yet been investigated .44

In this paper, the inverse scattering problem of a periodic perfectly conducting cylinder by transverse45

magnetic(TM) wave illumination is investigated on the application of both PSO and SADDE. In section46

II, the solution of the forward scattering problem is presented. In section III and IV, inverse problem47

and the numerical results of the proposed inverse problem are given, respectively. Section V gives the48

conclusions.49

2. Forward problem50

Let us consider a periodic cylinder which is partially immersed in a lossy homogeneous half-space, as51

shown in Fig. 1 Media in regions 1 and 2 are characterized by permittivities and conductivities (ε1, σ1)52

and (ε2, σ2) respectively. A perfectly conducting cylinder is illuminated by a TM plane wave. The array53

is periodic in the x-direction with a periodic length d and is uniform in the z-direction. The cross-section54

is described in polar coordinates in the x, y plane by the equation ρ = F (θ). We assume that the time55
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dependence of the field is harmonic with the factor ejωt. Let
−→
E inc denote the incident field form region56

1 with incident angle φ as shown in Fig. 1. The scattered field,
⇀

Es = Esẑ can be expressed by57

Es(x, y) =

∫ 2π

0
G(x, y;x, y′)J(θ′)dθ′ (1)

Where58

G(x, y;x′, y′) =
{
G1(x, y;x

′, y′), y � −a
G2(x, y;x

′, y′), y > −a
(2)

59

G1(x, y;x
′, y′) =

∞∑
l=−∞

1

2π

∫ ∞

−∞

j

γ1 + γ2
ejγ1(y+a)e−jγ2(y′+a)e−jα(x−x′−ld)dα (3)

60

G2(x, y;x
′, y′)=

∞∑
l=−∞

1

2π

∫ ∞

−∞

j

2γ2

(
e−jγ2|y−y′|+

γ2 − γ1
γ2 + γ1

e−jγ2(y+2a+y′)

)
e−jα(x−x′−ld)dα (4)

61

J(θ) = −jωμ0

√
F 2(θ) + F ′2(θ)Js(θ) (5)

With62

γ2q = k2q − α2, k2q = ω2μ0εq − jω0σq, q = 1, 2

Here G(x, y;x′, y′) is the two-dimensional half-space periodic Green’s function, and Js (θ) is the in-63

duced surface current density which is proportional to the normal derivative of electric field on the64

conductor surface. a is buried depth. The boundary condition at the surface of the scatterer states that65

the total tangential electric field must be zero and this yield an integral equation for J(θ):66

Ei(F (θ), θ) = −
∫ 2π

0
G(x, y, x′, y′)J(θ′)dθ′ (6)

For the direct scattering problem, the scattered field Es is calculated by assuming that the periodic length67

d and the shape function F (θ) of the object is known. This can be achieved by first solving J(θ) in68

Eq. (6) and calculating Es in Eq. (1). For numerical calculation of the direct problem, the contour is first69

divided into sufficient small segments so that the induced surface current can be considered constant over70

each segment. Then the moment method is used to solve Eqs (6) and (1) with pulse basis function for71

expanding and Dirac delta function for testing. Note that, for numerical implementation of the periodic72

Green’s function, we might face some difficulties in calculating this function. In fact, when y approaches73

y′, the infinite series in Eq. (3), Eq. (4) is very poor convergent. Fortunately, the infinite series may be74

rewritten as a rapidly convergent series plus an asymptotic series which can be summed efficiently. Thus75

the infinite series in the periodic Green’s function can be calculated efficiently [11–16].76

For the inverse problem, assume the approximate center of scatterer, which in fact can be any point77

inside the scatterer, is known. Then the shape function F (θ) can be expanded as:78

F (θ) =

N/2∑
n=0

Bn cos(nθ) +

N/2∑
n=1

Cn sin(nθ) (7)
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where Bn and Cn are real coefficients to be determined, and N + 1 is the number of unknowns for the79

shape function. In the inversion procedure, the PSO and SADDE are used to minimize the following80

objective function:81

OF =

{
1

Mt

Mt∑
m=1

∣∣∣Eexp
s (r̄m)− Ecal

s (r̄m)
∣∣∣2 / |Eexp

s (r̄m)|2
}1/2

(8)

where Mt is the total number of the mimic measurement data points. Eexp
s (

⇀
rm) and Ecal

s (
⇀
rm) are the82

measured and calculated scattered fields, respectively.83

3. Inverse problem84

3.1. Particle swarm optimization85

Particle swarm global optimization is a class of derivative-free, population-based and self-adaptive86

search optimization technique which introduced by Kennedy and Eberhart [3]. Particles are distributed87

throughout the searching space and their positions and velocities are modified based on social behavior.88

The social behavior in PSO is a population of particles moving towards the most promising region of89

the search space. Clerc [17] proposed the constriction factor to adjust the velocity of the particle for90

obtaining the better convergence; the algorithm was named as constriction factor method.91

PSO starts with an initial population of potential solutions that is composed by a group of randomly92

generated individuals representing shape function of the cylinder. After the initialization step, each par-93

ticle of population has assigned a randomized velocity and position. Thus, each particle has a position94

and velocity vector, and moves through the problem space. In each generation, the particle changes its95

velocity by its best experience, called xpbest , and that of the best particle in the swarm, called xgbest .96

Assume there are Np particles in the swarm that is in a search space in D dimensions, the position and97

velocity could be determine according to the following equations (constriction factor method):98

vgij = w · vg−1
ij + c1 · ϕ1 ·

(
Xg

pbestij
− xg−1

ij

)
+ c2 · ϕ2 ·

(
Xg

gbestij
− xg−1

ij

)
(9)

99

xgij = xg−1
ij + vgij (10)

where vgij and xgij are the velocity and position of the i-th particle in the j-th dimension at g-th generation,100

ϕ1 and ϕ2 are both the random number between 0 and 1, c1 and c1 are learning coefficients and w is the101

inertial weighting factor that can avoid the particle trapped into the local minimized solution.102

It should be noted that the shape function used to describe the shape of the cylinder will be determined103

by the PSO scheme. The flowchart of the PSO is shown in Fig. 2. PSO goes through five procedures as104

follows:105

1. Initialize a starting population: Randomly generate a swarm of particles.106

2. Calculate E fields.107

3. Evaluate the population using objective function: The PSO algorithm evaluates the objective func-108

tion Eq. (8) for each individual in the population.109

4. Find xpbest and xgbest .110

5. Update the velocity and position.111

Stop the process and print the best individual if the termination criterion is satisfied, else go to step II.112
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Fig. 2. Flowchart for the particle swarm optimization (PSO).

3.2. Self-Adaptive Dynamic Differential Evolution (SADDE)113

The SADDE are based on DDE scheme. The SADDE algorithm starts with an initial population of114

potential solutions that is composed by a group of randomly generated individuals which represents115

periodic length and the shape function of the cylinders. The flowchart of the SADDE algorithm is shown116

in Fig. 3. SADDE algorithm goes through six procedures as follows:117

1. Initialize a starting population: Individuals in SADDE algorithm represent a set of D-dimensional118

vectors in the parameter space for the problem, {Xi : i = 1, 2, · · · , Np}, where D is the number119

of parameters to be optimized and Np is the population size.120

2. Evaluate the population using cost function: After initialization, SADDE algorithm evaluates the121

objective function Eq. (8) for each individual in the population.122

3. Perform mutation operation to generate trial vectors: The mutation operation of SADDE algorithm123

is performed by arithmetical combination of individuals. For each parameter vectorXi of the parent124
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Fig. 3. Flowchart for the self-adaptive dynamic differential evolution (SADDE).

generation, a trial vector Vi is generated according to the following equation:125

(V g+1
i )j = (Xg

i )j + ξ · [(Xg
best)j − (Xg

i )j ] + χ · [(Xg
m)j − (Xg

n)j],

m, n ∈ [0, Np − 1],m �= n (11)
where ξ and χ are the scaling factors associated with the vector differences (Xg

best − Xg
i ) and126

(Xg
m − Xg

n), respectively. The disturbance vector V due to the mutation mechanism consists of127

parameter vector Xg
i , the best particle Xg

best and two randomly selected vectors. Note that ξ and χ128

are adjusted automatically.129

In SADDE, The basic idea is to have the control parameters evolve through generations. New130

vectors are generated by using the evolved values of the control parameters. These new vectors are131

more likely to survive and produce offspring during the selection procedure. In turn, the survived132

vectors carry the improved values of the control parameters to the next generation. Therefore,133

the control parameters are self-adjusted in every generation for each individual according to the134

following scheme:135

ξg+1
i

=

{
ξl + rand1 ∗ ξu, if rand2 < 0.1
ξg
i
, otherwise (12)
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χg+1
i

=

{
χl + rand3 ∗ χu, if rand4 < 0.1
χg

i
, otherwise (13)

where rand1, rand2, rand3 and rand4 are random numbers with the values uniformly distributed136

between 0 and 1. ξl, ξu, χl and χu are the lower and the upper limits of ξ and χ, respectively .Both137

ξl and χl are set to 0.1 and both ξu and χuare set to 0.9 [18,19].138

4. Perform crossover operation with probability of crossover CR to deliver crossover vectors: The139

crossover operation of SADDE algorithm is performed to increase the diversity of the parameter140

vectors. This operation is similar to the crossover process in GAs. However, the crossover operation141

of SADDE algorithm just allows to deliver the crossover vector ui by mixing component of the142

current vector Xg
i and the trial vector Vi. It can be expressed as:143

(ug+1
i )j =

{
(Vg+1

i )j , ζ(j) < Cr
(Xg

i )j , ζ(j) � Cr
(14)

144

Crg+1

i
=

{
rand5, if rand6 < 0.1
Crg

i
, otherwise (15)

where Cr is the probability of crossover, Cr ∈ (0, 1). rand5 and rand6 are random numbers with145

the values uniformly distributed between 0 and 1. ζ(j) is the random number generated uniformly146

between 0 and 1.147

5. Perform selection operation to produce offspring: Selection operation is conducted by comparing148

the parent vectorXg
i with the crossover vectors ug+1

i . The vector with smaller cost function value is149

selected as a member of the next generation. Explicitly, the selection operation for the minimization150

problem is given by:151

Xg+1
i =

{
u

g + 1
i , if OF (ug+1

i ) < OF (Xg
i )

Xg
i , otherwise

(16)

The SADDE algorithm is carried out in a dynamic way: each parent individual will be replaced by152

his offspring if the offspring has a better cost function value than its parent individual does.153

6. Stop the process and obtain the best individual if the termination criterion is satisfied, else go to154

step 2.155

The algorithm of SADDE is a self-adaptive version of DDE, which is processed of self-adaptibility and156

the ability of approaching the “Best”. Based on the self-adaptive concept, the parameters ξ, χ and Cr157

adjust automatically while the time complexity does not increase.158

4. Numerical results159

We illustrate the performance of the proposed inversion algorithm and its sensitivity to random noise160

in the scattered field. Let us consider a perfectly conducting cylinder buried in a lossless half-space161

(σ1 = σ2 = 0). The permittivity in each region is characterized by ε1 = ε0 and ε2 = 2.56ε0 respectively.162

The frequency of the incident wave is chosen to be 1 GHz with incident angles φ equal to 45◦, 90◦ and163

135◦, respectively. The wavelength λ0 is 0.1 m. For each incident wave, 18 measurements are made at the164

points equally separated on a semi-circle with the radius of 2.1 m in region 1. There are 54 measurement165

points in each simulation. We set the total number of generation to be 500 (i.e., gmax = 500), c1 and c2166

to be 1.3 and 2.8 respectively. The population size is chosen as 35. Number of unknowns is set to be 8167

(i.e., N + 2 = 8), In other words, seven unknowns for the shape function F (θ) and one unknowns for168
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Fig. 4. The reconstructed shape of the cylinder for example 1.
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Fig. 5. The value of fitness versus the number of function
calls for example 1.
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Fig. 6. The reconstructed shape of the cylinder for example
2.
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Fig. 7. The value of fitness versus the number of function
calls for example 2.

period length. The search range for the unknown coefficient of the shape function is chosen to be from169

0 to 0.1. The search range for the unknown periodic length is chosen from 0.05 to 0.1. Our purpose is to170

reconstruct the shape of the object by using the scattered field at different incident angles.171

Three examples are investigated for the inverse scattering of the proposed structure by using the PSO172

and SADDE. In the first example, the shape function is chosen to be F (θ) = (0.02+0.01 cos 2θ) m. The173

reconstructed shape function of PSO and SADDE for the best population member is plotted in Fig. 4174

and the value of fitness versus the number of function calls for example 1 is shown in Fig. 5. The number175

of function calls is the number of the calculation of direct problem. The total number of function calls176

is the total generations multiply by population size. The reconstructed shape error by PSO and SADDE177

are 0.4% and 0.1%, respectively. It is clear that the reconstructed result is good.178

In the second example, the shape function is chosen to be F (θ) = (0.02 +0.005 cos 3θ+0.005 sin θ)179

m. This example shows that the proposed scheme can reconstruct more complicated scatterer whose180
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Fig. 8. The reconstructed shape of the cylinder for example
3.
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Fig. 9. The value of fitness versus the number of function
calls for example 3.
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Fig. 10. Shape function error and periodic length error as functions of noise level by PSO and SADDE.

shape function has three concavities. The reconstructed shape function for the best population member181

is plotted in Fig. 6 and the value of fitness versus the number of function calls for example 2 is shown in182

Fig. 7. The reconstructed shape error by PSO and SADDE are 1.33% and 0.62%, respectively. There is183

a small discrepancy in the bottom of the shape since TM waves are incident from the top of the shape.184

In the third example, the shape function is chosen to be F (θ) = (0.02+0.005 cos 3θ+0.005 sin 3θ)m.185

The reconstructed shape function for the best population member is plotted in Fig. 8 and the value of186

fitness versus the number of function calls for example 3 is shown in Fig. 9. The reconstructed shape187

error by PSO and SADDE are 2.03% and 0.6%, respectively. It is seen that the error comes from the188

bottom of the shape, but we still can obtain good results by PSO algorithm and SADDE.189

From the three example, it is observed that PSO converges faster when the number of function calls190

are less than 5000. However, SADDE can get more accurate results when the number of function calls191

became large. As a result, SADDE are better then PSO for the complex objects. To investigate the effects192

of noise, we add to each complex scattered field a quantity b+cj, where b and c are independent random193
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numbers having a uniform distribution over 0 to the noise level times the R.M.S value of the scattered194

field. Normalized standard deviations of 10%, 20% and 30%, respectively, are used in the simulations.195

Figure 10 shows the reconstructed results under the condition that the scattered E fields to mimic the196

measurement data contaminated by the noise. The discrepancy of shape function of the reconstructed197

shape is shown in Fig. 10. Here PLE and SFE, which are called periodic length error and shape function198

discrepancies, respectively, are defined as199

PLE =

∣∣dcal − d
∣∣

d
(17)

200

SFE =

{
1

N ′

N ′∑
i=1

[F cal(θi)− F (θi)]
2/F 2(θi)

}1/2

(18)

where N ′ is set to 100. Quantities PLE and SFE provide measures of how well dcal approximates d201

and F cal(θ) approximates F (θ), respectively. It could be observed that good reconstruction has been202

obtained for shape of the perfectly conducting cylinder when the relative noise level is below 10%.203

5. Conclusion204

The problems of the periodic length and shape reconstruction of periodic conducting cylinder are205

investigated. Based on the boundary condition and the measured scattered field, we have derived a set206

of nonlinear integral equations and reformulated the imaging problem into an optimization one which207

solved by applying SADDE and PSO techniques.208

The objective function of both PSO and SADDE is to minimize the discrepancy between measured209

and estimated scattered field data. Numerical results show that SADDE outperforms the PSO in terms of210

accuracy and convergence speed, when the same number of iterations is applied, since SADDE realizes211

the ideas of approaching the “Self-Adaptive”. SADDE algorithm can result in accurate reconstruction212

even when the effects of noise are included under the condition of noise level less than 10−2.213
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